Medipix, in essence, is an integrated circuit connected to a sensitive element to form a small particle detector. It is a spin-off of the electronics developed for detectors used at the Large Hadron Collider. Its single photon counting feature enables it to produce X-ray images which are high resolution and noise-free, making it excellent for use in medical imaging and a broad range of applications involving radiation detection
The Medipix family consists of the Medipix 1 chip, the Medipix 2 chip, with an improved resolution, Timepix, a modified version of Medipix2 with the additional functionality of time measurements and Medipix3, which not only counts all of the photons but also determines the energy level of each individual photon detected.
A particle detector can observe each individual proton, electron, neutron or other exotic particle that fall within its measurement range. The intricacies of the LHC operation require the detectors to have certain qualities – they must be fast, noise-free and have high resolutions. CERN researchers saw the potential of transferring this technology outside the High Energy Physics domain, thus the Medipix project was born.
The Medipix chip is a single photon counting chip. In conventional methods several photons are needed to obtain a (black) image, but the Medipix chip requires just one and, therefore, requires less radiation. Another important advantage compared to conventional techniques is that no signal is measured if no photon enters. This means that there is no noise irrespective of the period of exposure.
Both the sensors and the microchips - which together form a hybrid detector - are divided into tiny sensitive elements (pixels), similar to those in a digital camera. These hybrid pixel detectors produce images with high resolution, high contrast and almost no noise. They are so sensitive that they can detect individual X-ray photons.
The Medipix2 CMOS ASIC is the successor of the Medipix1 (or PCC) photon counting chip. It benefits from the quick progress of CMOS technology which allows enhanced functionality of the pixel cell at the same time as providing a significant reduction in pixel size.
Medipix: Knowledge Translfer[online]. 2014 [cit. 2014-01-23]. Source: http://knowledgetransfer.web.cern.ch/life-sciences/from-physics-to-medicine/medipix
Presentation 1: Medipix chip on the ISS
Presentation 2: Energy calibration of Medipix chip